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Abstract 
 
This study presents a simplified method to account climate change impact in the conventional flood frequency 
estimation procedures. A stochastic cluster point process model known as the Modified Bartlett-Lewis Rectangular 
Pulses Model (MBLRPM) has reproduced the rainfall process satisfactorily. The evaporation series, which is less 
important in the context of flood in wet catchments with negligible snowfalls, is fitted to an Auto-Regressive Moving 
Average model, ARMA (1,1). The rainfall-runoff transformation of the catchments in this study is well captured by 
the revised Soil Moisture Accounting and Routing (SMARG) conceptual model. Monthly dimensionless 
precipitation scenario profiles are derived from ECHAM4/OPYC3 GCM output. Stochastic downscaling employed 
to represent precipitation scenarios in the MBLRPM. Then, a continuous simulation scheme was organized from 
components of the MBLRPM, the ARMA (1,1), the SMARG, the stochastic downscaling routine, and from flood 
frequency processor.  Precipitation scenarios that cover the plausible ranges of the General Circulation Models 
(GCMs) estimate and some scaling concepts are hypothesized, and introduced in to the rainfall process by perturbing 
the MBLRPM parameters. In order to investigate the impact of climate change on the flood frequency, calibrated 
parameters of the MBLRPM, the ARMA (1,1) and the SMARG models, and the dimensionless precipitation scenario 
profiles are routed through the continuous simulation scheme. A climate change correction growth curve for flood 
frequency is then developed. 
 
 
Résumé 
 
Cette étude présente une méthode simplifiée pour intégrer les changements climatiques dans les procédures 
classiques d´estimation des fréquences de crue. Un modèle stochastique, connu sous le nom de Modified Barlett-
Lewis Rectangular Pulses Model (MBLRPM) a reproduit de facon satisfaisante le phénomène des précipitations. Les 
chroniques d´évaporation, cette derniere étant moins importante pour les crues se produisant dans des bassins 
versants humides peu soumis aux chutes de neiges, ont été en adéquation avec un modèle nomme Auto-regressive 
Moving Average model, ARMA (1,1). La transformation des précipitations en ruissellement sur le bassin versant 
concerné par l´étude est bien rendue par le modèle conceptuel appelé Soil Moisture Accounting and Routing 
(SMARG). Chaque mois, les profils de scénarii de précipitation, sans dimensions, sont calculés a l`aide du modèle 
ECHAM4/OPY3 GCM, qui fournit un résultat global. Ce résultat a éte adapté pour le modèle MBLRPM, 
fonctionnant à une échelle géographique plus locale.. Puis, un programme de simulation continue a été mis en oeuvre 
à partir des composants du MBLRPM, du ARMA (1,1) du SMARG, du programme stochastique et du programme 
d´analyse de fréquences de crue. Nous avons supposé que les scénarios de précipitation couvrent l´étendue plausible 
des estimations du General Circulation Models (GCMs) et que  les concepts d´échelle sont vérifiés, et les avons 
introduits dans le modèle de pluie en modifiant les paramètres du MBLRPM. Pour étudier l´impact des changements 
climatiques sur les fréquences de crue, les paramètres étalonnés des modèles du MBLRPM, du ARMA (1,1) et du 
SMARG, ainsi que les profils de scénarios des précipitations sans dimension sont introduits dans le programme de 
simulation continue. Une courbe corrigeant les fréquences de crue en fonction des changements climatiques peut 
alors être définie. 
 
 
1. Introduction 
 
Design flood estimation is a principal component in the study, design and management of water resource projects 
that are planned to achieve economical and safe water control and/or use. The most widely applied procedure for this 
purpose is an event-based flood frequency estimation in which future relationships between flood quantile and its 
frequency of occurrence is estimated from statistical analysis of observed historical events. The analysis might be 
done either at-site or at regional level (Cunnane, 1988; Hosking and Wallis, 1997).  The second class of methodology 
for flood frequency estimation is a derived distribution approach, which is pioneered by Eagleson (1972). The 
probabilistic distribution of flood flows is determined from the density functions of climatic and hydrologic 
variables. This method suffers from the simplified assumptions made about the distribution and interaction of these 
variables for the purpose of mathematical tractability (Hebson and Wood, 1982; Diaz-Granados et al., 1984; 
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Bierkens and Puente, 1990). The most appealing but not fully investigated approach to flood frequency estimation is 
reported to be continuous simulation modeling (IH, 1999). The method simulates catchments water balance 
continuously by routing continuous climatic inputs through moisture accounting hydrological models. Different 
investigation carried out recently proved the promising potential of the method for land use and climate change 
impact assessment studies (Calver and Lamb, 1996; Blazkova and Beven, 1997; Lamb, 1999, Cameron et al., 1999; 
Demissie, 1999; Hashemi et al., 2000; Loukas et al. 2002; Yu et al. 2002). 

All the above procedures estimate the magnitude of flood flow expected to occur at a specified return period 
from the current hydro-meteorological variables. But Global Circulation Models (GCMs) are forecasting pronounced 
variation in climatic variables under different integrations of greenhouse gas emission scenarios. For example, the 
main flood producing variable, precipitation, shows a general increasing trend in autumn and winter in the Northern 
Hemisphere mid- and high- latitudes (IPCC, 2001). Therefore, it is evident that flood frequency would be affected by 
changes in annual precipitation variability and by changes in rainfall characteristics (intensity and duration). This 
calls for plausible and physically based approach to incorporate climate-induced changes in the conventional flood 
frequency estimation procedures.  

Assessment of the effect of climate change on the hydrologic systems has been broadly approached in three 
different ways. The first category directly simulates GCM outputs through watershed water balance models (Kamga, 
2001; Loukas et al., 2002). But GCM results are too crude to apply at catchment level due to uncertainties involved 
in coarse spatial resolution and in simplified parameterization of cloud cover and rainfall process. The second 
approach identifies trends in climatic variables from long historical records and generates future time series based on 
the current trend, which is used as an input for hydrological models (Yu et al., 2002). The drawback behind this 
method is the expectation of similar trends in present and future climatic variables, which lacks an account of social, 
economical and environmental changes and interaction between elements of the climate. The third methodology 
applies a downscaling mechanism that can transfer high-resolution GCM simulated variables into watershed levels 
either by nesting regional climate models over GCM outputs, by establishing statistical relationships between large-
scale circulation patterns and local climatic variables (Brandsma and Buishad, 1997; Wilby et al., 1998; Conway and 
Jones, 1998), or by representing the changing pattern of the GCMs outputs in to the respective variables’ stochastic 
process at the watershed level (Burlando and Rosso, 1991). The current study applies stochastic downscaling to 
plausible precipitation scenarios, percentage change of monthly precipitation, and then develops the corresponding 
flood frequency scenarios using continuous simulation modeling. 
 
 
2. The Study Area and Data Sets 
 
This study was conducted on Fergus river catchment at Ballycorey in County Clare, Ireland. It has a drainage area of 
512 km2. The catchment is mostly flat with karstic nature in the upper lands.  The dominant land use patterns are 
more farmlands with some proportions of scrubland, coniferous plantation, natural woodland and mixed woodland 
around the outlet. The Burren National Park is located at the center of the catchment, which will preserve the land in 
its present state for long time. Small caves, scattered ponds, and minor lakes are the major hydro-geological features 
of the catchment. The stream networks and the lakes are concentrated at the lower half part of the catchment while 
the upper part is a karstic land. 

The areal mean daily rainfall of the catchment is computed from the daily rainfall data of four 
meteorological stations: Carron, Corofin, Crushen and Kilmaley. The mean annual rainfall of the catchment is 1425 
mm. Monthly potential evapo-transpiration from the nearby Shannon Airport synoptic station and mean daily flow 
from Ballycorey hydrological station (the outlet) from 1975 to 1999 inclusive are also used for calibration and 
verification of the rainfall-runoff model. The mean annual daily flow for this period was 10.25 m3/s.  

Monthly mean total precipitation prediction [1950 – 2099] from the German Max-Planck Institute’s GCM 
(HCHAM4/OPYC3) for constant CO2 (control) and for greenhouse gas integrations of IS92a emission scenario is 
downloaded from the DKRZ ftp database organized on behalf of the IPCC Data Distribution Centre. From the data at 
a grid point close to the catchment (8.4375W, 51.4162N), dimensionless monthly profile of the changing factors of 
precipitation is established as discussed in section 4.2.     
 
 
3. Modeling of Meteorological and Hydrological Variables 
 
Continuous simulation study requires generation of input variables to the water-balance model and proper 
specification of the model. The common input variables are rainfall and potential evapo-transpiration. Therefore, it is 
necessary to model the rainfall process, the potential evapo-transpiration series and the rainfall-runoff transformation 
independently using the respective historical time series. 
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3.1. Stochastic rainfall modeling 
 
The best representation of rainfall process can be achieved through cluster point process models. The parameters of 
these models physically explain the rainfall process. Previous studies done by Khaliq (1995) and Khaliq and 
Cunnane (1996) showed that Modified Bartlett-Lewis Rectangular Pulses model (MBLRPM) performs well in 
Ireland. Following Rodriguez-Iturbe et al. (1988), the MBLRPM defined as follows. Storm origins arrive in a 
Poisson process of rate λ. Each storm origin is followed by a Poisson process of rate β of cell origins. The process of 
cell origins terminates after a time that is exponentially distributed with parameter γ. The durations of the cells are 
exponentially distributed random variables with parameter η and each cell depth is a random constant exponentially 
distributed with mean μX. The η values for distinct storms are independent random variables having a common 
gamma distribution with index α and scale parameter ν. In order to change the mean inter-arrival interval of cells 
and the mean storm duration time randomly with cell duration, dimensionless parameters κ = β/η and φ = γ/η are 
introduced. The number C of cells per storm has a geometric distribution with mean μC = 1 + κ/φ. Generally, the 
MBLRPM has six parameters: λ, κ, φ, ν, α and μX. The full analytical expression of the first- and second-order 
properties for both depth and aggregated process are given in Rodriguez-Iturbe et al. (1987 and 1988). 

The MBLRPM is applied to the areal mean daily rainfall of the catchment on monthly basis so that the 
stationary assumption of the model could be satisfied. The monthly empirical estimates [1975 – 1999] of mean, 
variance, lag-1 autocorrelation and dry proportion at 1-day and 2-days levels of aggregation are matched with the 
respective analytical expressions of the aggregated process for parameter estimation. Rosenbrock’s method of non-
linear unconstrained optimization algorithm is used to minimize a weighted least square objective function. The 
estimated and validated parameters are listed in Table 1 and the performance of the model is displayed in Figure 1. 
 
 
Table 1. Estimated parameter values of the MBLRPM for daily rainfall of Fergus Catchment. 
 

Month λ (day-1) κ φ ν (day) α μX (mm.day-1) 

Jan 0.50636 0.13078 0.02489 1.86020 30.42782 25.36800 

Feb 0.52266 0.14836 0.02323 1.13195 31.30844 27.01556 

Mar 0.64982 0.08860 0.02279 1.64738 42.55167 31.89741 

Apr 0.12901 0.12380 0.01599 5.25120 24.88441 10.94763 

May 0.37741 0.15949 0.03353 1.51322 30.87696 22.05181 

Jun 0.52997 0.05628 0.03030 1.01563 33.03481 56.42801 

Jul 0.43008 0.06357 0.01907 1.24320 36.35539 41.04176 

Aug 0.24244 0.06316 0.01080 1.76717 28.24481 37.46912 

Sep 0.41144 0.04433 0.01253 1.21746 35.65247 59.20959 

Oct 0.49870 0.04786 0.00838 0.79702 44.67371 79.01536 

Nov 0.55715 0.05392 0.01359 0.95851 35.65328 59.14481 

Dec 0.10594 0.17143 0.00784 3.37363 22.42182 13.52191 
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Figure 1.  Comparison of historical and MBLRPM simulated annual maximum areal mean rainfall for heaviest 
(January) and the lightest (May) months.  

 

3.2. Evapo-transpiration series modeling 
 
The autocorrelation and partial autocorrelation functions of the series suggest that first-order Auto-Regressive and 
first-order Moving Average process, ARMA (1,1), suffices to model this time series. If the evaporation series Et has 
a mean of μ, the ARMA (1,1) model can be expressed as: 
 
  ( ) ,               (1)  ( ) ( ) tat BEB ξσθ−=μ−φ− 211
 
where, φ is the auto-regressive parameter, θ is moving average parameter, B is the backward shift operator, σa

2 is the 
variance the white noise process, and ξt is the standard normal ordinate. For the purpose of satisfying the stationary 
condition, the modeling exercise is performed on monthly basis. Table 2 portrays the estimated and validated model 
parameters. 
 
Table 2.   Estimated parameter values of ARMA (1,1) model for daily evapo-transpiration.  
 

Month φ θ σa
2 μ 

Jan 0.97163  0.03539 0.11246 0.280 

Feb 0.96082 -0.30986 0.14216 0.708 

Mar 0.96533  0.08535 0.09385 1.169 

Apr 0.96567 -0.18083 0.11852 2.014 

May 0.95325  0.14513 0.23423 2.765 

Jun 0.97945 -0.25724 0.25959 3.065 

Jul 0.97720  0.06263 0.30748 2.803 
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Table 2 continued … 
 

Month φ θ σa
2 μ 

Aug 0.96528  0.08481 0.22504 2.364 

Sep 0.96901 -0.33162 0.13909 1.690 

Oct 0.96899  0.03861 0.06239 0.804 

Nov 0.96310 -0.21100 0.06703 0.320 

Dec 0.96594  0.16786 0.07963 0.140 

 

3.3. Rainfall-runoff modeling 
 
Since the proposed continuous simulation modeling involves generation of lengthy time series as many realization as 
possible, the rainfall-runoff model should not be complicated and computationally costly. Therefore, a lumped 
conceptual model developed in this Department and whose performance in such climatic regions was found to be 
reliable is selected for this study. Its development starts from the original Layers Model of O’Connell et al. (1970), 
which is modified to SMAR (Soil Moisture Accounting an Routing) model by Khan (1986). Then, Liang (1992) 
introduced the concept of separating quick and slow runoffs in the SMAR model and came up with the SMARG 
model. Tan and O’Connor (1996) and Mingkai (1996) made further improvement on this model. But, the SMARG 
version that is available in the UCGMODEL package is adopted in the current study. 

The SMARG model, as most conceptual models, has two major components; water balance and routing 
components. The water balance component simulates non-linear processes involved in runoff generation on 
conceptual basis and hence generates surface and ground water runoffs from rainfall and evaporation input. Six 
parameters are involved in the process: (1) T converts evaporation input series to model-estimated potential 
evaporation series, (2) H determines the proportion of the generated direct runoff from excess rainfall, (3) Y is the 
maximum infiltration capacity depth, (4) Z is the soil moisture storage depth of the layers, (5) C is the evaporation 
decay coefficient of the soil moisture storage layers in such a way that less evaporation occurs from deeper layer, and 
(6) G determines the proportion of the ground water generated runoff from moisture in excess of soil storage 
capacity. The routing component transforms the generated surface and ground water runoffs into discharge at the 
catchment outlet through linear time-invariant storage systems of Nash cascade of N equal reservoirs and simple 
linear reservoir respectively. This attenuation and diffusion process adds three more parameters: (1) N is a shape 
parameter and (2) NK is a scale parameter of a gamma unit impulse response of the Nash cascade reservoirs, and (3) 
Kg is the storage coefficient of the ground water simple linear storage. All together, the SMARG model has nine 
parameters.     

Using the twenty-five years [1975 – 1999] of synchronous daily data of rainfall, evapo-transpiration and 
stream flow of the catchment; the SMARG model was calibrated and verified for all sets of parameters so that all 
features of the model can be used in the simulation study. After some preliminary modeling exercises, a memory 
length of 15 days, a warm up period of 60 days, a calibration period of 17 years and a verification period of 8 years 
and the Rosenbrock’s optimization algorithm are used for parameter estimation. The Nash-Sutcliffe’s efficiency 
criterion (R2 in %) of 92.70 and 91.31 achieved during calibration and verification respectively.  Table 3 shows the 
list and estimated values of the parameters. The graphical display of the observed and simulated flow series shown in 
Figure 2 confirms the good performance of the model for the Fergus catchment. 
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Table 3. Optimized parameters of the SMARG model for Fergus catchment. 
 

Water Balance Component   Routing Component 

Parameter Estimate   Parameter Estimate 

T 0.992929   N 2.18895 

H 0.512684   NK 16.0486 

Y 250.540   Kg 34.3327 

Z 483.373     

C 0.564493     

G 0.699249     
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Figure 2. Comparison of observed and SMARG model simulated flow series for Fergus catchment. 
 
 
4. Development of Climate Scenarios 
 
The main objective of the present study is to develop flood frequency scenarios that can represent the effect of 
climate change on flow extremes from plausible ranges of climate scenarios known from GCM experiments using 
stochastic downscaling and continuous simulation modeling. However, floods from catchments that are wet all over 
the year with negligible snowfalls are less sensitive to changes in evapo-transpiration. This was verified by 
simulation studies conducted on the Fergus catchment.  It is well understood that precipitation is the main deriving 
element of the water balance and plays the major role in flood producing mechanisms. Therefore, the impact of 
climate change on flood flows could be investigated by downscaling precipitation scenarios into the rainfall 
stochastic process and then to watershed process.  
 

4.1. Stochastic downscaling of precipitation scenarios 
 
Following the pioneer work of Burlando and Rosso (1990), precipitation scenarios in terms of percentage change or 
rate of change of mean monthly precipitation between climate-enhanced and control GCM simulations, stochastic 

 6



modeling and scaling concepts could be applied to predict future precipitation patterns at operational resolution level. 
Burlando and Rosso (1991) introduced the methodology using Neyman-Scott Rectangular Pulses model to 
investigate the pattern of extreme storm rainfall under climate change. In this study the theoretical approach is 
further developed for the Modified Bartlett-Lewis Rectangular Pulses model. The scaling relationship between the 
second-order properties of the aggregated rainfall depth process is used to find the rate of change of the variance 
from the mean, the adopted scenario. The scaling exponents of central moments (mean and variance) of the 12 
months were not significantly different from each other. The non-seasonality nature of the scaling exponent is taken 
as sufficient condition to assume the same value during the current and future climate. From empirical analysis of the 
areal mean daily rainfall of the catchment at different levels of aggregation (h), the following scaling relationship 
was obtained (see Figure 3a):  

  ,  where c = 5.42599 and ψ = 0.68815.                        (2) { } ψ
=

2][]var[ h
i

h
i YEcY

Consequently, changing factor of variance Rσ
2 can be written as in terms of the precipitation scenario, changing 

factor of mean Rm, as follow: 
                     (3) ( ) ψ

σ
= 2

2 mRR
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Scaling relatiFigure 3. onship of (a) central moments and (b) rain cell characteristics for daily areal rainfall of Fergus 
catchment. 

fluctuating rainfall depth process (Vanmarcke, 1983). For 
uctuation θ can be given : 

   

 
 

Rainfall depth is a highly fluctuating process. Most hydrological applications like DDF use the aggregated 
(integrated) values of this fluctuating process. The scale of fluctuation gives the level of aggregation required to 
obtain stable (low variance) estimates of the mean of the 
the MBLRPM, the scale of fl by
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When Redriguez-Iturbe et al. (1988) introduced the concept of randomness in cell duration parameter (η), 
the mean number of cells per storm, μC = 1+κ/φ, is kept constant without losing generality. Similarly, we can assume 
that μC will be the same in both the control and climate-induced systems. Then, it is easy to show that the changing 
factors of κ and φ are equal. 
                    (7) φκ = RR
The purpose of two of the six parameters of the MBLRPM (α and ν) is to randomly vary the gamma distributed cell 
duration parameter (η) from storm to storm. So, if we assume that the shape parameter α remains unchanged during 
climate enhancement, the cell duration will still vary due to the change in scale parameter ν. Moreover, the 
mathematical expression will be simplified to extractable level. Therefore, 
  Rα = 1.0                                 (8)  
Different empirical studies and physical interpretation of the rainfall process confirms that average storm intensity is 
inversely related to its duration of occurrence. Koutsoyiannis and Foufoula-Georgiou (1993) suggested power 
relationship so that both the inverse relation and the scaling property could be exploited. Consequently, we are 
hereby assuming the same scaling relationship could occur between mean rain cell intensity, μx and mean rain cell 
duration, E[η-1] = ν/(α-1) in the MBLRPM structure. Figure 3b empirically verifies this assumption and yields a 
power relationship of: 

  
δ

⎟
⎠
⎞

⎜
⎝
⎛

−α
ν

=μ
1

dX  ,  where d = 3.1387 and δ = -0.7829.             (9) 

From equations (8) and (9), the changing factor relationship between μX and ν can be written as:  
                  (10) ( )δ

νμ = RR
X

Now we had changing factors for three second-order properties, mean, variance and scale of fluctuation, 
and for three theoretically sound assumptions that gave equations (7), (8) and (10). Then, after algebraic 
manipulation and application of simple optimization technique, the changing factors by which the six model 
parameters should be perturbed to represent the precipitation scenario into the stochastic rainfall process could easily 
be obtained.      
  

4.2. Seasonal profile of precipitation scenarios  
 
As the main purpose of this study is to figure out the amount by which flood magnitudes at different frequencies of 
occurrence will change when the rainfall changed by certain factor, it becomes necessary to set a reference season 
and monthly profile of precipitation changes. Almost all annual maximum floods in this country were observed in 
winter season (DJF). Therefore, percentage change of winter precipitation during climate change is hereafter taken as 
precipitation scenario. Since rainfall modeling is taking place in monthly basis, we have to devise a means to 
distribute this precipitation scenario to each month. 

The monthly and seasonal percentage changes of precipitation from ECHAM4/OPYC3 GCM predictions of 
greenhouse gas and control integrations for different climatic times are computed for the nearby grid point as shown 
in Figure 4. Then, a dimensionless monthly precipitation scenario profile, whose ordinate values are listed in Table 4, 
is obtained from rescaling the mean monthly changing factors of precipitation by the mean winter changing factor.  
And this dimensionless profile is used to distribute the above defined precipitation scenario to the respective months 
in the continuous simulation experiment. Based on the precipitation changes observed from the GCM experiment 
shown in Figure 4, precipitation scenarios that include all possible future ranges are identified as –20%R, -15%R, -
10%R, 0%R, +10%R, +15%R, +20%R and +25%R, and applied in the foregoing experiment. Hereinafter the 0%R 
precipitation scenario is known as reference precipitation scenario.  
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Table 4. Dimensionless monthly precipitation scenario profile derived from ECHAM4/OPYC3 GCM data. 
 

Month Profile Ordinate  Month Profile Ordinate 

Jan 1.01232  Jul 0.76435 

Feb 1.00469  Aug 0.75891 

Mar 1.04580  Sep 0.89647 

Apr 0.79504  Oct 0.95380 

May 0.85542  Nov 1.02349 

June 0.83505  Dec 0.98428 
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Figure 4. Monthly percentage changes of precipitation from greenhouse gas integration to control integration of the 
ECHAM4/OPYC3 GCM experiment at (8.4375W, 51.4162N) grid point. 

 
 
5. Organization and Application of Continuous Simulation Scheme 
 
The time series generator part of the MBLRPM and ARMA (1,1), the simulator component of the SMARG model, 
the precipitation downscaling routine, and flood frequency processor are combined together to form a continuous 
simulation scheme. The inputs to the scheme are the calibrated parameters of the three models, the dimensionless 
monthly precipitation scenario profile and the precipitation scenario as percentage change of winter rainfall. The 
number of simulations (realizations), the length of the time series and the starting year of simulation are off course 
part of the input. The scheme was tested and verified by its ability to reproduce the observed annual maximum 
annual flow series from 1000 simulations of 25 years each for the current climate. The result displayed in Figure 5 
confirms the dependability of the scheme for the proposed climate change impact assessment study. 
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Figure 5.  Comparison of the historical and the continuous simulation scheme results of annual maximum flow 

series. Dashed lines show the 95% confidence intervals of the simulation results. 
 

For each of the above-hypothesized precipitation scenarios, 1000 simulations of 100 years continuous flow 
series are generated and the corresponding annual maximum flow (AMF) series are selected and analyzed non-
parametrically.  The percentage changes of the annual maximum flow series of a given precipitation scenario form 
the respective series of the reference precipitation scenario are computed for all of the above scenarios. These 
percentage changes can be interpreted as AMF scenarios at the specified frequency of occurrence.  Further 
normalizing the AMF scenarios by the respective precipitation scenarios gives dimensionless factors that quantify 
the impact of climate change on flood flows in terms of precipitation changes. These factors for different frequency 
of occurrences produced growth curves, as shown in Figure 6, which can be applied as a climate change correction 
to flood frequencies estimated from the current climatic data by any conventional method. 
 
 
6. Discussion of Results and Conclusions 
 
The continuous simulation scheme assembled for this study requires higher level of computing power and takes 
appreciable time to get the result. Therefore, it is not feasible to adopt such simulation schemes for practical design 
flood estimation works. Since precipitation scenarios for a certain region can be estimated from GCMs output, the 
developed climate change correction growth curves can be used with conventional flood frequency analysis methods 
for design flood estimation. Hence engineers and technicians engaged in the design and operation of storm sewers, 
culverts, rain water harvesting reservoirs, weirs and other water resources projects can apply climate change 
corrections to design floods estimated from monographs, charts and conventional methods using such curves 
developed for their region. For example, if the precipitation scenario is 20%R and the return period considered is 20 
years (EV1 reduced variate of 1.97), one can read 0.95 from Figure 6 and get 19% (=0.95×20%) as the amount by 
which the 20-year flood should be increased. 

The simulation result summarized in Figure 6 shows that there is no linear relationship between 
precipitation and annual maximum flood scenarios. It also reveals that low return period floods are more sensitive to 
climate change than high return period floods. This might be due to the degree of wetness of the cathment at 
different flood frequencies. If the catchment is wetter, its dynamics in less affected by changes in precipitation and 
produces higher floods. So, the derived curves exhibit a physically possible pattern. 

Although some assumptions and monthly mean changes in GCM precipitation outputs are employed in the 
downscaling process, this preliminary result of our on going study gives an indicative framework for incorporating 
climate change in flood frequency estimation procedures. We hope that most of the limitations of this work will be 
clarified at the final stage of the study.  
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Figure 6.  Climate change correction growth curves for flood frequency estimation. 
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