INTEGRATED DESIGN OF HYDROLOGICAL NETWORKS

Edited by

Marshall E. Moss
US Geological Survey, Water Resources Division,
Reston, Virginia 22092,
USA

Proceedings of a symposium held during the 2nd Scientific Assembly of the International Association of Hydrological Sciences at Budapest, Hungary, July 1986. The symposium was sponsored by the United Nations Educational, Scientific and Cultural Organization and the World Meteorological Organization

IAHS Publication No. 158
Published by the International Association of Hydrological Sciences 1986.
IAHS Press, Institute of Hydrology, Wallingford, Oxfordshire OX10 8BB, UK.
IAHS Publication No. 158.

The selection and presentation of material and the opinions expressed in this publication are the responsibility of the authors concerned and do not necessarily reflect the views of the publishers.

IAHS Press would like to thank the team at the US Geological Survey, Reston, who helped Marshall Moss to process the papers in English through to camera-ready form, and to congratulate them all on the excellent standard achieved. Marshall was greatly assisted by Eileen Smith and Gary Taskar; Deborah McLean, Nancy Owens and Patricia Shipley (word processing); Rebecca Phipps (subediting); and Carolyn Moss (illustrations and layout).
Contents

Preface M.E.Moss & O.Starosolszky v

1 SPATIAL SAMPLING

Principles of specifications of optimum networks of hydrologic observation sites I.F.Karasasff 3

Surface-water networks in Australia A.J.Hall 11

Sensitivity of measures of precipitation-network performance to certain assumptions about interstation correlation and network density T.A.Buishand 23

Conceptual rainfall interstation correlation functions for time-integrated rainfall depths Philip Th.Stol 35

Design of rain-gage network using spatial correlation for the Bharathapuzha basin on the Malabar Coast of India E.J.James, K.E.Sreedharan, G.Ranganna, I.V.Nayak & T.S.Prasad 49

Analyse des réseaux nivométriques du Québec en vue de leur rationalisation J.P.Fortin, G.Jacques & G.Morin 57

Estimation of the covariance and semivariogram for stationary, isotropic random fields Witold F.Krajewski & Christopher J.Duffy 71

Network design of geoelectric surveys for estimating aquifer properties Andras Bardossy, W.E.Kelly & Istvan Bogardi 85

Assessment of harvesting treatment effects on the water balance of forested basins—precipitation network design considerations R.B.B.Dickison, D.C.Palmer & D.A.Daugharty 97

A robust version of classical D-optimal design applied to dissolved-oxygen sag-curve calibration E.A.Casman 105

2 SAMPLING FREQUENCY AND ITS JOINT OPTIMIZATION WITH SPACE-SAMPLING SCHEMES

Mean and variance in network-design philosophies J.Nemec & A.J.Askew 123
Information content and sample length in sediment records Kaz Adamowski, Terry Day, Nicolas R. Dalezios & Denis Gingras 133
Determining the length of observation periods of hydrometric stations Ma Xiufeng 141
Time-variable precipitation measurements Heinz Bergmann & Harald Stubenvoll 149
Sensitivity of calculated peak-runoff rates to rainfall-sampling frequency David A. Woolhiser 161
Spectral analysis and related topics as a tool for the selection of sampling and storage frequencies P.S. Griffioen 173
Méthodologie d'élaboration d'un réseau d'échantillonnage: application à la conception d'un réseau de détection de tendances dans l'acidification des eaux de surface du Québec B. Bobée, J. Haemmerli & M. Lachance 187
Integrated remote sensing modeling of soil moisture: sampling frequency, response time, and accuracy of estimates P.C.D. Milly 201
Tradeoff between frequency and density of a ground-water measurement network Frans C. Van Geer & Pieter Van der Kloet 213
Design of cost-effective programs for monitoring ground-water contamination Dennis B. McLaughlin & Wendy D. Graham 231
La planification des réseaux de mesures hydrologiques et de la qualité des eaux des lacs à usages multiples S. Baranyi & Gy. Szabó 247
Optimization of regional water-quality-monitoring strategies J. Pintér & L. Somlyódy 259
Generating efficient gaging plans for regional information Gary D. Tasker 269
Time and space scales in the design of hydrological networks György Kovács 283
Management of water-resources information during changing times Marshall E. Moss 307
3 EFFICIENT UTILIZATION OF INFORMATION

Efficacité maximale des réseaux hydrologiques malgré les contraintes actuelles J.A.Rodier 321

Possibilités d'allègement des réseaux hydrométriques dans les pays en voie de développement après réalisation de synthèses hydrologiques régionales J.C.Olivry 329

Physicogeographical and hydrological regionalization—the basic precondition for the extension of the areal validity of existing hydrological information Eduard Šimo 343

Integrated hydrological data bank for lakes and their catchment areas S.Baranyi 351

Evolution in the concept and realization of hydrological measurement networks as applied to the real-time Dijle flood control project I.Terrens & A.Van der Beken 361

Data collection and observation system for snow cover in mountainous areas M.I.Getker, B.K.Tzarev & A.A.Chirkova 371

An on-line data-management system for monthly rainfall in Southern Africa M.C.Dent & H.M.Wills 381

Aspects of hydrological network design in watersheds with hydraulic structures P.Şerban & I.Şaşoi 389

Minimum requirements for evaluation of measurement results from small basins H.Liebscher 401

Optimized geohydrochemical maps—a basis for regional planning T.Kellner, L.Liebermann & U.Tröger 407
TISON AWARD

Following the presentation by the Exeter Assembly Organizing Committee of the sum of $13,000 to the Association and the acceptance of the idea of an annual prize to recognize the scientific contributions of young hydrologists to IAHS, the Bureau established the Tison Fund. Investment income from the Fund will be used to provide an annual prize of $750 according to the terms of the Award set out below:

TISON AWARD — RULES

1. The IAHS Tison Award aims to promote excellence in research by young hydrologists. The award will be announced annually and will be presented in a public ceremony during either an IUGG/IAHS General Assembly or an IAHS Scientific Assembly.

2. The Tison Award will be granted for an outstanding paper published by IAHS in a period of two years previous to the deadline for nominations. Nominations should be received by the Secretary General of IAHS not later than 31 December each year. The award will be announced by 31 May of the following year.

3. Candidates for the award must be under 41 years of age at the time their paper was published.

4. The Award will consist of a citation in the name of L.J. Tison and an amount of US$750. (If the successful paper is jointly authored, the monetary award will be divided equally between the authors.)

5. Nominations for the Tison Award may be submitted by the National Committees of IAHS and also by any individual or group of persons. They should be sent directly to the Secretary General of IAHS and should contain a reasoned argumentation.

6. The award decision will be made by a committee of seven members, one from each of the IAHS Commissions and Committee. The members of the Award Committee will be hydrologists of outstanding research reputation. The IAHS Bureau will appoint the members of the Award Committee, membership lasting for a period of two years. The Chairman of the Award Committee will be rotated among the different representatives of the IAHS Commissions and Committee.

7. The Award Committee may not recommend an award in any one year if none of the papers submitted is of sufficiently high standard.

ADDRESS FOR NOMINATIONS: Dr. J.C. Rodda, Secretary General IAHS, Institute of Hydrology, Wallingford, Oxfordshire OX10 8BB, UK.