Preface:

Developments in land subsidence investigation

These proceedings compile the papers that were submitted to the Eighth International Symposium on Land Subsidence (EISOLS), and represent an overview of the state of the art in the investigations of land subsidence around the world. One of the main accomplishments of EISOLS has been the production of this volume with a considerable amount of high quality scientific papers. Because many major subsidence areas occur along the coast in rapidly developing countries with increasing demands for groundwater, oil and gas the previous seven Symposia on Land Subsidence have attracted attention to major subsidence areas along coastal areas in the world, such as Tokyo in Japan (1969; elevation 35 m), Anaheim in the USA (1976; elevation 66 m), Venice in Italy (1984; elevation 5 m), Houston in the USA (1991; elevation 15 m), The Hague in The Netherlands (1995; elevation 4 m), Ravenna in Italy (2000; elevation –1 m), and Shanghai in China (2005; elevation 6 m). EISOLS follows the tradition of the previous symposia but with an added focus on subsidence in inland areas, such as in and near Querétaro, Mexico (2010, elevation 1820 m), the host city.

In recent years considerable multidisciplinary research effort has been expended in attempts to describe the complex nature of the phenomena related to land subsidence, which is caused either naturally or anthropogenically. The multidisciplinary focus on these processes is critically needed and will play an important role in the development of resource management strategies addressing the impacts of climatic change and the means to achieve sustainable urban environments and optimal use of the land and water resources. Although the problem is global in the sense that it affects major urban centres and engineering facilities (mining, water distribution and storage, railroads and ports, among others) worldwide, the mitigation and solution for each case demands knowledge of the local geological, hydrogeological, mechanical, and morphological characteristics of the areas affected. The new advances in these multidisciplinary studies show the growing need to incorporate new views in planning of urban development, in legal frameworks, the related social problems and environmental damages, monuments heritage, and urban risk analysis.

The papers in Section 1 of this book examine the mechanisms of earth fissures and fracturing induced mainly by groundwater pumping, a widespread problem in central Mexico. Case studies from Mexico and the USA are presented, as well as different methodologies for characterization and monitoring of fracturing. The improvement of numerical methods, including nonlinear analysis, thermo-poro-elastic criteria, and analytical solutions considering poro-elastic media, are presented in Section 2. The papers in this section evaluate models of land subsidence caused by groundwater and gas extraction in Italy, USA, China, Mexico, The Netherlands, Japan, and Poland. One contribution examines the thermo-mechanical effects of seawater injection for reversing subsidence. Advances in computer capabilities have led to achievements of recent years in modelling and simulation of geological system deformation caused by fluid or gas depletion and their associated hazards, allowing the specialists to couple the geomechanical and hydraulic behaviour, and to consider subsoil heterogeneities. In Section 3, geological and geomechanical processes associated with land subsidence are addressed. Most of these contributions are by Mexican scientists, and document ground fracturing in cities such as: Morelia, Querétaro, San Luis Potosí, Aguascalientes, Jalisco, Zacatecas, Mexico City and Pachuca. Case studies from The Netherlands, Spain and Iran also are presented. The geomechanical behaviour of clayey materials from Paris and Mexico City are discussed, as are some geotechnical aspects of mining and construction in China. The papers in Section 4 document notable advances in techniques for measuring and monitoring ground displacements using remote sensing (InSAR) and new methods for processing satellite data to improve temporal and spatial resolution (DInSAR, PSI, PInSAR). The reported case studies include those from: Venice, Bologna, Emilia Romagna and Crotone regions in Italy; California, USA; Mexico City, Mexicali, Baja California and Morelia in Mexico, Catalonia, Spain; Java, Indonesia; the Canto Basin and Kujukuri plain in Japan; Iran, India and China. In situ Global Positioning System and extensometer monitoring strongly support some of the studies. Alarm
systems are being developed at some of the sites mentioned. Section 5 provides a set of papers discussing the social and economic impact of land subsidence and the need to incorporate a legal framework in public policies and resources management. Specialists from The Netherlands, Italy, USA and China document examples of subsidence management, and works from Mexico establish the need to consider the legal implications of environmental and urban damage caused by land subsidence and fracturing associated with excessive groundwater exploitation. Specific studies of strategic techniques for the assessment of urban risk in Mexico and Poland also are included. The papers in Section 6 deal with the problem of fluids withdrawal (gas and water) and provide simulations of subsidence for different extraction scenarios. The results and implications related to climate change are presented by scientists from Canada, USA, China and Mexico.

Analysis of the subsidence research presented in the EISOLS leads to reflection on the state of the art of the subject world-wide. The studies of land subsidence from around the world highlight the difference in the development of analytical and monitoring techniques used to assess the related risks, and reflect the various socio-economic activities contributing to the phenomena in each country. EISOLS provided an important opportunity to document and review the problems in Mexico. A special effort is needed to integrate efforts of the many scientists and other specialists working on this subject in Mexico and to coordinate academic issues with government agencies dealing with resources management. An accurate assessment of risk and environmental damage should support the planning of urban development in the increasingly populous cities of central Mexico. The absence of contributed research from other Latin America countries is noted; perhaps the problems are not as common as in Mexico. A few case studies of subsidence caused by salt and carbonate dissolution have been reported in Argentina and Cuba, and a study from Guatemala recently reported the case of sinkholes related to collapsible materials. Though the exploitation of gas and oil in the eastern part of Mexico and in Venezuela certainly are accompanied by important ground deformation consequences, the impacts largely are under-reported.

Finally, we acknowledge the support of the UNESCO Working Group on Land Subsidence (Alice Aureli, IHP-UNESCO, Ivan Johnson, Honorary Chairman, Laura Carbognin, Chairman, Keith R. Prince, vice-chairman, Frans B. Barends, Devin L. Galloway, Giuseppe Gambolati, Dora Carreón-Freyre and Jane Frankenfield Zanin, Technical Secretary) in organizing the EISOLS. We are especially grateful for our English Editor Cate Gardner and the editorial staff at IAHS who edited this diverse collection of papers. The Universidad Nacional Autonoma de Mexico and especially the Centro de Geociencias provided invaluable logistical support during the organization of the symposium. EISOLS in Mexico is indebted to German Figueroa-Vega, former Mexican member of the original UNESCO Working Group on Land Subsidence, who pioneered the first multidisciplinary work related to land subsidence in Mexico in the 1970s. We hope that further systematic work in Mexico and other Latin-American countries as well as nascent international collaborations will be spawned from the EISOLS.

The EISOLS is an opportunity and an important means for the international land subsidence community to exchange ideas, developments and experience. We sincerely hope that EISOLS will benefit academicians and professional practitioners interested in subsidence processes and related issues. We thank those who came to Querétaro from around the world to share their expertise, and look forward to meeting again with you and even more colleagues from other countries at the future Ninth International Symposium on Land Subsidence.

Dora Carreón-Freyre and Mariano Cerca
UNAM, Querétaro, México

Devin L. Galloway
USGS, Sacramento, California, USA
ORGANIZING COMMITTEE
UNESCO Working Group on Land Subsidence
Alice Aureli, International Hydrological Programme (IHP), UNESCO, Paris, France
A. Ivan Johnson, Consultant, Arvada, Colorado, USA. Honorary Chairman
Laura Carbognin, Consiglio Nazionale delle Ricerche, CNR-ISMAR, Venezia, Italy. Chairman
Keith R. Prince, US Geological Survey, Menlo Park, California, USA. Vice-Chairman
Giuseppe Gambolati, Università degli Studi di Padova, Italy
Frans B. Barends, Deltares–GeoDelft, Delft, The Netherlands
Dora Carreón-Freyre, Universidad Nacional Autónoma de México, UNAM, México
Devin L. Galloway, US Geological Survey, Sacramento, California, USA
Jane Frankenfield Zanin, Consiglio Nazionale delle Ricerche, Italy. Technical Secretary

LOCAL ORGANIZING COMMITTEE
Dora Carreón-Freyre, Universidad Nacional Autónoma de México (UNAM), President
Mariano Cerca Martínez, UNAM
Alfredo Zepeida Garrido, Universidad Autónoma de Querétaro (UAQ)
Dionisio León Salas, UNAM
J. Jesús Silva Corona, UNAM
Liliana Cabrera Gómez, UNAM
Carlos Hernández, UNAM.
Gil Ochoa González, Instituto Tecnológico de Estudios Superiores de Occidente (ITESO)

Honorary Committee
José Narro Robles, Rector of the Universidad Nacional Autónoma de México, UNAM
Carlos Arámburo de la Hoz, Coordinador de la Investigación Científica, UNAM
Gerardo Carrasco Núñez, Director of the Centro de Geociencias, UNAM
Luca Ferrari Pedraglio, Centro de Geociencias, UNAM
Rafael Alexandri Rionda, President of the Sociedad Geológica Mexicana (SGM)
Walter Paniguaza Zavala, President of the Sociedad Mexicana de Ingeniería Geotécnica (SMIG)
José Manuel Romo Jones, President of the Unión Geofísica Mexicana (UGM)

SCIENTIFIC ADVISORY BOARD (SAB)
Devin L. Galloway, USGS, Sacramento, California, USA
Giuseppe Gambolati, Università degli Studi di Padova, Italy
Thomas J. Burbey, Virginia Tech, Blacksburg, Virginia, USA
Enrique Cabral Cano, Instituto de Geofísica, UNAM, Mexico
German Figueroa V. Scientific Consultant, Mexico
Frans B. Barends, Deltares–GeoDelft, Delft, The Netherlands
Thomas L. Holzer, USGS, Menlo Park, California, USA
Stanley A. Leake, USGS, Tucson, Arizona, USA
Pietro Teatini, DMMMSA, Università degli Studi di Padova, Italy
Fabio Rocca, Politecnico di Milano, Milan, Italy
Gabriel Auvinet, Instituto de Ingeniería, UNAM, Mexico
Efraín Ovando Shelley, Instituto de Ingeniería, UNAM, México
Ger de Lange, TNO, Geological Survey of the Netherlands, Utrecht, The Netherlands
Alfonso Rivera, Natural Resources Canada, Québec, Canada
Klaudia Oleschko Lutkova, Centro de Geociencias, UNAM, Mexico
Toni Settari, Schulich School of Engineering, University of Calgary, Canada
Luigi Terzi, ENI E & P, Milano, Italy
Luigi Tosi, CNR, ISMAR, Venecia, Italy
Xue Yu-Qun, Earth Science Department of Nanjing University, Nanjing, China

ENDORSENG ORGANIZATIONS
UNESCO, United Nations Educational, Scientific and Cultural Organization
UNAM, Universidad Nacional Autónoma de Mexico
CGEO, Centro de Geociencias, UNAM
UAQ, Universidad Autónoma de Querétaro
GEQ, Gobierno del Estado de Querétaro
CONCYTEQ, Consejo de Ciencia y Tecnología del Estado de Querétaro
CONACYT, Consejo Nacional de Ciencia y Tecnología
CEA, Comisión Estatal del Agua de Querétaro
COTAS, Comité Técnico de Aguas Subterráneas del Acuífero de Amazcala
CONAGUA, Comisión Nacional del Agua
SGM, Servicio Geológico Mexicano
USGS, United States Geological Survey
IAHS, International Association of Hydrological Sciences
AI, Academia Mexicana de Ingeniería
SMIG, Sociedad Mexicana de Ingeniería Geotécnica
SGM, Sociedad Geológica Mexicana
UGM, Unión Geofísica Mexicana
AGHM, Asociación Geohidrológica Mexicana
AIMMG, Asociación de Ingenieros de Minas, Metalurgistas y Geólogos de México A.C.